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Introduction

Pyrochlore-structured oxides (A2B2O7) and their derivative 
structures have been extensively studied under the extreme 
conditions of high pressure [1–11], high temperature [12–15], 

and under irradiation [16–37]. The structural transitions 
that result from extreme environments have been of great 
interest for pyrochlore-type materials [38]. Pyrochlore-
structured materials have been proposed for applications 
such as hosting immobilized actinides from nuclear fuel 
reprocessing or dismantled nuclear weapons [39, 40].

The pyrochlore structure (A2B2X7; Fd-3m) is a 2  ×  2  ×  2 
supercell of the fluorite structure (AX2; Fm-3m) in which 
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Abstract
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types 
undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form 
the pyrochlore structure for A  =  La–Tb and the defect-fluorite structure for A  =  Dy–Lu. 
High-pressure transformations in A2Hf2O7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite 
(A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman 
spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure 
revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-
range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates 
investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) 
structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like 
structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform 
to defect-fluorite with an amorphous component. For all compositions, in situ Raman 
spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-
structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) 
than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show 
Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-
earth stannates. The second-order Birch–Murnaghan equation of state fit gives a bulk modulus 
of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the 
defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type 
ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of 
~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates 
show similar behavior to that reported for rare earth zirconates at high pressure.
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there are two ordered cation sites and ordered anion vacan-
cies [41] (figure 1(b)). Larger (often trivalent) cations occupy 
the 16d or A-site in 8-fold scalenohedral coordination, and 
smaller (often tetravalent) cations occupy the 16c or B- site 
in distorted octahedral coordination [41]. Oxygen anions in 
the 8b site are tetrahedrally coordinated by A3+, the vacant 8a 
site is tetrahedrally coordinated by B4+, and the 48f oxygen 
anions are tetrahedrally coordinated by two each of A3+ and 
B4+ [41]. The ratio of cation ionic radii, rA/rB, roughly deter-
mines whether a material with A2B2O7 composition will form 
the pyrochlore structure. The pyrochlore structure is stable 
in the rA/rB range of 1.46–1.78 [41], though pyrochlore- 
structured compounds with radius ratio lower than 1.46 can 
be synthesized via solid-state methods at high temperatures 
[42, 43].

Materials with rA/rB  <  ~1.46 form a disordered, defect- 
fluorite structure [41–57] (figure 1(a)). In defect-fluorite-
structured oxides (Fm-3m), the A3+ and B4+ cations are 
randomly distributed over a single cation site, and all 
oxygen anions onto one anion site that is 1/8 vacant, with 
the vacancies distributed randomly. Recently, Shamblin 
et  al investigated the short-to-medium range order of the 
defect-fluorite structure using neutron total scattering and 
pair distribution function (PDF) analysis [38]. They found 
that the defect-fluorite structure consists of local weberite-
like orthorhombic units, tessellated such that orthorhombic 
and isometric fluorite-type structures coexist at different 
length scales [38]. This analysis was conducted on pyro-
chlore compounds that had undergone high-energy heavy 
ion irradiation, but not on pyrochlore compounds that had 

Figure 1.  Unit cells of (a) fluorite-type and (b) pyrochlore-type oxides viewed along the [1 0 0] direction. In pyrochlore, cation sites are  
A3+ (blue) and B4+ (green).

Figure 2.  Schematic of structural transformations for A2B2O7 pyrochlore under extreme conditions.
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disordered through other extreme environments such as 
high pressure [38].

While many pyrochlore compounds—notably zirconates, 
titanates, and stannates have been extensively studied under 
extreme environments [2–38], rare-earth hafnates have 
received limited attention [1]. Generally, when pyrochlore-
structured materials are subjected to extreme conditions, 
defects are generated by two mechanisms. Anion Frenkel-
pairs form, causing the anion sub-lattice to disorder and more 
closely resemble a defect-fluorite sub-lattice [44, 45, 47–49, 
55]. Additionally, anti-site defects form, where A3+ and B4+ 
cations disorder [44, 45, 49].

At ambient conditions and at high temperatures, the 
formation of cation anti-site defects lowers the formation 
energy of anion Frenkel-pairs. Cation substitution causes 
all sites to appear similarly electronically on the lattice, 
and anions can more easily move [44, 45, 47–49]. Under 
irradiation, disordering of the anion sublattice occurs prior 
to that of the cation sublattice [50] due to the intrinsic anion 
vacancies that already exist in the structure. At high pressure, 
anion disorder tends to occur several GPa lower than cation 
disorder [2–11]. This is due to the relative ease of ‘oxygen-
hopping’ as pressure is applied since a vacancy already exists 
in the structure. Additionally, BO6 octahedra can distort to 
accommodate pressure-induced stress [3]. Both disordering 
mechanisms occurring simultaneously leads to structural 
transformations (figure 2).

In extreme environments such as high pressure, high 
temperature, and under ion irradiation, pyrochlore-type 
materials have been shown to undergo four types of struc-
tural changes [1–38, 50–53] (figure 2). The inherent defect-
forming mechanisms in the structure cause disordering 
from an ordered pyrochlore to a disordered defect-fluorite. 
Zirconate pyrochlores under high pressure undergo a phase 
transition to a lower-symmetry cotunnite-like phase (Pnma) 
[2–7, 11, 16, 21, 23, 26, 28, 30, 35]. Some titanate pyrochlores 
have been shown to become amorphous under high pressure 
and ion irradiation conditions [6, 9, 10, 19, 24, 26, 51–53], 
while others have been shown to disorder under ion irradiation 
to a crystalline defect-fluorite structure [50–53]. Lanthanum 
hafnate pyrochlore has been shown to decompose to La2O3 
and HfO2 under high pressure [1].

The cation radius ratio is the key parameter that determines 
pyrochlore structural behavior in extreme environments. There 
may be a relationship between how a given pyrochlore com-
pound reacts to irradiation and high pressure [26]; some pyro-
chlore compounds that amorphize at high pressure also do so 

under ion irradiation. For example, Gd2Ti2O7 has a large radius 
ratio and becomes amorphous at high pressures and under ion 
irradiation [26]. Rare earth zirconate pyrochlores, which have 
a smaller radius ratio than titanates, generally form a cotunnite-
like structure at high pressure that transforms to defect-fluorite 
upon quenching [3–7]. Pyrochlore compounds with smaller 
radius radios that transform to cotunnite-like structures at high 
pressure and defect-fluorite upon quenching are more likely to 
form defect-fluorite under ion irradiation [26].

Ln2Hf2O7 pyrochlores (Ln  =  La–Tb) are easily synthe-
sized [41–43, 55]. For Ln  =  Dy–Lu, these compositions have 
a disordered defect-fluorite structure, although recent work 
found evidence for pyrochlore domains in Dy2Hf2O7 [42, 43]. 
There is only one study of the high-pressure behavior of a 
hafnate pyrochlore, La2Hf2O7 [1]. In this study, the pyrochlore 
decomposed into binary oxides: La2O3 and HfO2, as deter-
mined by Raman spectroscopy and powder x-ray diffraction 
(XRD). This is a surprising result when compared to studies 
of other pyrochlore compounds at high pressure [2–11]. 
Although high-pressure experiments have not previously been 
conducted on other lanthanide hafnate pyrochlores, Zhang 
et al predicted that hafnate pyrochlores would behave simi-
larly to zirconate pyrochlores due to the small radius ratio of 
Ln3+/Hf4+ (table 1) and the similarity in radii of Hf4+ and 
Zr4+ [6, 7]. Hafnates are predicted to form the cotunnite-like 
structure at high pressure, and finally, the disordered defect-
fluorite structure upon release of pressure [6, 7]. Here, we pre-
sent the results of in situ Raman spectroscopy and synchrotron 
XRD experiments investigating the high-pressure structural 
responses of rare-earth hafnates, A2Hf2O7 (A  =  Y, Sm, Eu, 
Gd, Dy, Yb) to ~50 GPa.

Methods

Samples of A2Hf2O7 were synthesized by mechanical 
ball-milling and high-temperature annealing of HfO2 and 
A2O3 powders [52]. The precursor powders were mixed in 
a 2:1 ratio and ball-milled for 24–30 h. The samples were 
then annealed at 1500 °C for 12 h to eliminate structural 
defects—cation anti-site defects and anion Frenkel pairs—
that accumulate during the ball-milling process [52]. The 
resulting powders were characterized by powder XRD and 
Raman spectroscopy at ambient conditions. XRD confirmed 
that Sm2Hf2O7, Eu2Hf2O7, and Gd2Hf2O7 synthesized as 
pyrochlore, while Dy2Hf2O7, Yb2Hf2O7, and Y2Hf2O7 
formed a defect-fluorite structure (table 1). This is consistent 
with the prediction based on the radius ratio that rare-earth 
hafnates (A  =  La–Tb) would form the pyrochlore structure 
[41–43, 55, 56]. Pyrochlore Raman-active modes are evident 
in spectra from all samples [57–60] (figure 3), indicating all 
compositions have some degree of pyrochlore-type short-
range ordering.

Samples were loaded into diamond anvil cells (DACs) for 
in situ analysis at high pressure. A symmetric Mao-Bell-type 
DAC was used with cubic boron nitride and tungsten carbide 
seats and diamonds with 300 µm culets. Powders were loaded 
into a stainless-steel gasket with a 120 µm diameter sample 
chamber. A mixture of methanol and ethanol in a 4:1 ratio 

Table 1.  Cation radius ratio of A2Hf2O7 materials [41] (A  =  Sm, 
Eu, Gd, Dy, Y, Yb).

A rA/rHf

Sm 1.52
Eu 1.50
Gd 1.48
Dy 1.45
Y 1.44
Yb 1.38
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was used as the pressure-transmitting medium [61, 62]. A 
ruby sphere was included in the sample chamber to calibrate 
pressure using the ruby fluorescence method [63]. For Raman 
spectroscopy and XRD measurements, samples were incre-
mentally compressed to a maximum pressure of 50 GPa, and 
then quenched to ambient pressure.

In situ high-pressure Raman spectroscopy measure-
ments were collected at Stanford University in the Extreme 
Environments Laboratory (EEL). A Renishaw RM1000 
Raman microscope and 514.5 nm laser was used. The laser 
power was kept between 10 and 25 mW, and measurements 
were taken for 90–360 s. The program Fityk was used for 
spectra analysis and peak fitting [64].

In situ high-pressure powder XRD measurements were 
collected at beamline 16-BMD of the advanced photon 
source (APS), and at beamline 12.2.2 of the advanced light 
source (ALS). X-ray energy varied between experiments 
from 25 to 40 keV (incident wavelength, λ  =  0.4959–0.3099 
Å). The structures were refined using MAUD software 
[65]. Parameters refined were the unit cell parameter (a), 
phase scale factor, microstrain, atom site occupancies, and 
atomic displacement parameters. The data were refined 
until convergence was reached in all parameters. Resulting 
pressure–volume (P–V) data were fit to a second-order 
Birch–Murnaghan equation of state [66] using EOSFit7GUI 
software [67]. Errors in the Birch–Murnaghan EOS 

were propagated from unit cell parameter errors from the 
refinement.

Results and discussion

Raman spectroscopy was used to characterize the local struc-
ture of samples at ambient conditions. Pyrochlore oxides have 
six theoretical Raman modes [57–60, 68–73]:

Γ = + +A E F4Raman
crys

1g g 2g� (1)

These Raman-active modes are representative of vibra-
tions of the <Hf–O> and <Ln–O> bonds [53–56, 68–73]. 
Spectra (figure 3) show that all compositions of rare-earth 

Figure 3.  Raman spectra for the suite of rare-earth hafnates at ambient conditions. Spectra of Sm2Hf2O7 includes labels for Raman-active 
modes: Eg  +  A1g  +  4F2g, as well as the BO6 ‘breathing’ mode which is present in all compositions studied.

Table 2.  Fitted peak positions (cm−1) of pyrochlore Raman-active 
modes in rare earth hafnates (A2Hf2O7; A  =  Sm, Eu, Gd, Dy, Y, Yb) 
at ambient pressure. Raman peak positions fitted using Fityk [64].

A3+ F2g  +  Eg F2g F2g  +  A1g F2g

Sm 314 403 532 602
Eu 313 393 533 605
Gd 324 410 544 611
Dy 317 414 533 614
Y 324 414 522 614
Yb 309 403 517 617

J. Phys.: Condens. Matter 29 (2017) 255401
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hafnates studied have an initial degree of pyrochlore-type 
short-range ordering of cations and oxygen vacancies. This is in  
agreement with recent experimental work by Popov et al [42, 
43]; peak positions are consistent with previous theoretical and  
experimental Raman studies on rare-earth hafnates (table 2) 
[55, 57–60]. The first few modes at lower frequencies: F2g, Eg, 
and F2g modes arise from vibrations of the A–O  and B–O  
bonds. The higher frequencies of F2g arise from stretching 
of the B–O  bonds. Sm2Hf2O7, Eu2Hf2O7, and Gd2Hf2O7 
show Raman spectra typical of pyrochlore-structured oxides 
[57–60, 68–73]]. The four F2g modes are evident and distinct, 
with the Eg and A1g modes overlapping the first and third F2g 
modes, respectively. The cation radius ratio (table 1) indi-
cates that Dy2Hf2O7, Yb2Hf2O7, and Y2Hf2O7 are expected to 
form defect-fluorite structures [41–43, 55]. However, Raman 
spectra for these compositions still show the six theoretical 
Raman-active modes for pyrochlore-structured oxides [57–60]. 
In a fully disordered defect-fluorite, individual modes would 
be indistinguishable; all the spectra here indicate some initial 
pyrochlore-type short-range ordering of cations and oxygen 
vacancies [57–60]. In spectra collected from all compositions, a 
7th mode is evident around ~750 cm−1; this ‘breathing’ mode is 
attributed to distortions in the HfO6 octahedra and is not strictly 
allowed in a perfect pyrochlore structure [57]. However, no 
defect-free pyrochlore exists, so this mode typically appears in 
spectra collected for all pyrochlore compositions [57].

Figure 4 shows an indexed and refined in situ diffraction 
pattern for characteristic defect-fluorite phase of hafnate 
Yb2Hf2O7 at ~1.4 GPa. Yb2Hf2O7 and Y2Hf2O7 show typical 
diffraction patterns for the defect-fluorite structure at low 
pressures [1–11]. The XRD patterns for Dy-, Gd-, Eu-, and 
Sm- hafnates show a strong preferred orientation, with the 
(2 2 2) and (4 0 0) diffraction maxima having the highest 
intensity relative to other peaks. The preferred orientation 
may have been due to grain size, or interactions with the 
liquid pressure medium in the sample chamber. Nonetheless, 
for Gd-, Eu-, and Sm- hafnates, pyrochlore supercell 
peaks are evident, although with very low intensities 
(figure 5). In situ high-pressure XRD data from selected 

pressure points of representative compositions Gd2Hf2O7, 
Dy2Hf2O7, and Y2Hf2O7 are shown in figure  6 (other 
compositions: figure  S1).) A limited two-theta range is 
shown for Gd2Hf2O7 and Dy2Hf2O7 because of the preferred 
orientation; the strongest and most visible peaks are the 
(2 2 2) and (4 0 0) in Gd2Hf2O7, and the (1 1 1) and (2 0 0) 
in Dy2Hf2O7. A phase transition begins between 18 and 
25 GPa for all compositions studied, evidenced by a broad 
band appearing between the (2 2 2) and (4 0 0) diffraction 
maxima; the intensity of this feature continues to grow while 
the pyrochlore and defect-fluorite peaks decrease in intensity 
up to pressures of ~50 GPa, the highest pressure studied. 
The slow phase transition to a cotunnite-like phase has 
been described before in zirconate pyrochlores and defect-
fluorites [2–7, 11]. The new peak is assigned to the (1 2 0) 
maxima of the high-pressure phase. The phase transition in 
rare-earth hafnates takes place over 10–20 GPa (figure 7) and 
is still incomplete at ~50 GPa, the highest pressure examined 
for each composition. Figure  7 shows the progression of 
the phase transition using the relative intensities of the 

Figure 4.  Indexed and refined diffraction pattern of Yb2Hf2O7 (defect-fluorite) at 1.4 GPa. (λ  =  0.4959 Å).

Figure 5.  XRD graph of Sm2Hf2O7 at 0.3 GPa, showing limited 2θ 
range and pyrochlore supercell diffraction maxima.

J. Phys.: Condens. Matter 29 (2017) 255401
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(1 2 0) cotunnite peak to the (2 2 2) pyrochlore peak. Data 
from Eu2Hf2O7 are not shown because peak broadening 
and overlap prevents an accurate measurement of relative 
intensities. The phase transition in Sm2Hf2O7 had progressed 
the least by 50 GPa relative to other compositions studied. 
After decompression to ambient pressure, Sm2Hf2O7 showed 
distinct peaks from the defect-fluorite structure and peaks 
from the high-pressure cotunnite-like phase (figure S1). In 
the other compositions studied, XRD shows a relaxation to 
defect-fluorite type structure with an amorphous component 
as the samples are decompressed (figure 6). The XRD did 
not show any evidence of decomposition to A2O3 and HfO2, 
as was reported for La2Hf2O7 [1].

P–V data for the pyrochlore or defect-fluorite phase of each 
composition were fit to a second-order Birch–Murnaghan 
equation of state (figure 8) [66]. The data from all pressure 
points were included unless peak broadening or overlap from 
the phase transition prevented an accurate (error  >  0.009) 
refinement of the unit cell parameters of the pyrochlore or 
defect-fluorite phase. A mixture of methanol and ethanol in 
a 4:1 ratio was used as the pressure-transmitting medium. 
This mixture is hydrostatic until to ~11.5 GPa, but is quasi-
hydrostatic above 11.5 GPa [61, 62]. In order to more accu-
rately compare this study to previous studies on zirconate and 
titanate pyrochlores at high pressure [2–11], the B-M EOS 
was fit to all pressure-points possible (error in unit cell param
eter  <0.01). The three pyrochlore compositions, Sm2Hf2O7, 
Eu2Hf2O7, and Gd2Hf2O7 decrease in unit cell volume as the 
ionic radii of the lanthanides in the A-site decrease (table S2). 
Errors in B0 and V0 (table S2) were propagated from errors in 
the unit cell parameter at each pressure point. The bulk moduli 
for Eu- and Gd- hafnates are within error (15 GPa) of each other 
at approximately 240 GPa, with Sm2Hf2O7 having a slightly 

larger bulk modulus of 265 GPa (figure 9). For the defect- 
fluorite compositions of Dy2Hf2O7, Yb2Hf2O7, and Y2Hf2O7, 
the ambient pressure unit cell volume is smallest in Yb2Hf2O7, 
and similar for Dy2Hf2O7 and Y2Hf2O7. The bulk moduli of 
Y- and Yb- hafnates are within error (15 GPa) of each other 
at 400 GPa. Dy2Hf2O7 has a noticeably lower bulk modulus 
of 303 GPa, although it has a comparable volume to Y2Hf2O7 

Figure 6.  In situ high-pressure synchrotron x-ray diffraction patterns (λ  =  0.4959 Å) of representative rare-earth hafnates with long-range 
ordered pyrochlore structure (Gd2Hf2O7) and defect-fluorite structure (Dy2Hf2O7, Y2Hf2O7).

Figure 7.  Relative intensity of most intense phase features: 
cotunnite maxima (1 2 0), to pyrochlore maxima (2 2 2) or 
defect-fluorite maxima (1 1 1), with increasing pressure after the 
onset of phase transition for Sm-, Gd-, Dy-, Y-, and Yb- hafnate 
compositions.

J. Phys.: Condens. Matter 29 (2017) 255401
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and Yb2Hf2O7. The trend of inversely correlated bulk modulus 
and radius ratio has been seen in zirconate and titanate pyro-
chlore oxides at high pressure [2–11]. Additionally, irradiated 
defect-fluorite oxides have shown a higher fracture toughness 
than pyrochlore-type oxides with the same B-cation, which is 
inversely related to the bulk modulus [74].

In situ high-pressure Raman spectroscopy of rare-
earth hafnates shows several changes to the local structure  
(figure 10). Generally, pyrochlore-structured oxides and 
Dy2Hf2O7 show distinct pyrochlore modes up to higher pres
sures (18–20 GPa) than defect-fluorite-structured Y2Hf2O7 and 
Yb2Hf2O7, of which the spectra quality is severely degraded 
at pressures as low as 4 GPa. Sm2Hf2O7, Eu2Hf2O7, and 
Gd2Hf2O7 compositions have the largest cation radius ratio 
(table 1); in these materials, the pyrochlore Raman modes are 
evident and distinct until ~30–33 GPa. At the highest pressure 
measured (~50 GPa), a broad band between 200 and 300 cm−1 
is evident in these compositions, which is attributed to the 
high-pressure cotunnite-like phase that pyrochlore is known 
to transform into [2]. For Gd2Hf2O7, Dy2Hf2O7, Y2Hf2O7, and 
Yb2Hf2O7, at the highest pressure (50 GPa) measured shows 
that the BO6 ‘breathing mode’ [56] dominates the spectra 
around ~800 cm−1.

Figure 8.  Second-order Birch–Murnaghan equation of state for rare-earth hafnates (A2Hf2O7: A  =  Sm, Eu, Gd, Dy, Y, Yb).

Figure 9.  Bulk moduli of lanthanide hafnates from 2nd order 
Birch–Murnaghan equation of state [62].

J. Phys.: Condens. Matter 29 (2017) 255401
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Figure 11 shows the increase in frequency versus 
pressure of the pyrochlore Raman-active modes and the 
BO6 ‘breathing’ mode for Sm2Hf2O7, Eu2Hf2O7, and 
Dy2Hf2O7 (other compositions, figure S2). The peaks shift 

to increasing frequency with pressure and do not show 
discontinuities in slope below the onset pressure of the 
phase transition as indicated by x-ray diffraction data. Mode 
Grüneisen parameters [75] were calculated for each of the 

Figure 10.  In situ high-pressure Raman spectra of rare-earth hafnates at selected pressures. Bottom four panels in each graph are materials 
under increasing compression. Top panel in each graph shows decompression from 50 GPa.

Figure 11.  Peak positions of pyrochlore Raman-active modes with increasing pressure for rare-earth hafnates.

J. Phys.: Condens. Matter 29 (2017) 255401
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pyrochlore Raman-active modes (table 3). Generally, the 
mode Grüneisen parameters for pyrochlore-type hafnates 
(Sm-, Eu-, and Gd- hafnate) showed less variation relative to 
the defect-fluorite-type hafnates (Dy-, Y-, and Yb- hafnate).

Quenching to ambient pressure indicates differences 
between Sm2Hf2O7 and all other compositions studied  
(figure 6). In quenched Sm2Hf2O7, the modes of a pyrochlore-
type material are present in the Raman spectra. The peaks 
are significantly broadened, suggesting the local structure 
of quenched Sm2Hf2O7 is a defect-rich pyrochlore. For the 
other hafnate compositions, two bands are evident, centered 
around ~350 cm−1 and ~800 cm−1. The sharp ‘breathing mode’ 
around 800 cm−1 is attributed to distortions of the BO6 octa-
hedra [56]. This modes’ appearance in the quenched Raman 
spectra indicates some cations in the structure are in octahedral 
coordination [12–14]. The band at ~350 cm−1 is assigned to a 
mixture of AO8 and BO6 vibrations that are separate modes in 
ordered pyrochlores. The broadened band indicates disorder in 
the quenched local structure. Spectra of this type have been 
reported previously in pyrochlores subjected to irradiation and 
high pressure, most recently in irradiated stannate pyrochlores 
that transformed to weberite-like structures [17]. It was recently 
discovered that the structure of disordered pyrochlores is best 
described as defect-fluorite-like at a long range—  >  ~20 Å—
and weberite-like at a shorter range—  <  ~20 Å [38]. Hafnate 
pyrochlores quenched from 50 GPa indicate a defect-fluorite 
long-range structure by x-ray diffraction, and a weberite-like 
local structure by Raman spectroscopy. This could indicate 
that pyrochlore oxides disordered by compression have a sim-
ilar pathway and structure to those disordered by irradiation 
and compositional defects [26].

The FWHM of the first peak—F2g  +  Eg—is used as a 
proxy for disordering of the local structure of pyrochlore; 
an increasing FWHM relative to FWHM at ambient pressure 
indicates increasing disorder with the formation of anion 
Frenkel-pairs and cation anti-site defects [42, 43]. The Raman-
active modes in pyrochlore all correspond to stretching and 
bending vibrations in oxygen-cation bonds. Although Raman 
spectroscopy is more sensitive to the changes to the oxygen-
sublattice than x-ray diffraction, disordering in the cation 
sublattice will also affect Raman modes. Sm-, Eu-, Gd-, and 
Dy- hafnates show a gradual increase of the FWHM of the 
first peak with pressure (figure 12), indicating that the onset 
of disorder in the material begins immediately as pressure 
is increased and then continues to gradually increase, which 

is consistent with previous studies on pyrochlores at high 
pressures [2–11]. For Y-, and Yb- hafnate, peaks overlap and 
broaden significantly even at pressures below 10 GPa; thus, 
FWHM peak analysis was not done.

Conclusions

In general, rare-earth hafnate pyrochlores and defect-fluorites 
show similar behavior to zirconates under high pressure 
[2–7, 11] as evidenced by in situ Raman spectroscopy 
and x-ray diffraction in DACs. Pyrochlore- and defect-
fluorite-structured hafnates behave distinctly from each 
other under high pressures, though Raman spectroscopy at 
ambient conditions showed that all compositions initially 
had pyrochlore-type short range ordering (figure 3). In situ 
x-ray diffraction demonstrated that all compositions begin a 
slow phase transition to a cotunnite-like phase between 18 
and 25 GPa that was not complete at 50 GPa (figure 6). After 
decompression, in situ x-ray diffraction demonstrated that all 
compositions quenched to defect-fluorite with an amorphous 
component (figure 6), rather than the Ln2O3  +  HfO2 observed 
for La2Hf2O7 [1]. X-ray diffraction from pyrochlore-type 
hafnates and Dy2Hf2O7 showed strong preferential orientation 
at high pressure, even under hydrostatic conditions. The 
Raman modes of pyrochlore-structured oxides were distinctly 
evident until pressures as high as 30 GPa; as compared with 
Dy2Hf2O7 (18–20 GPa), Y2Hf2O7, and Yb2Hf2O7 (4 GPa). 
Compressibilities calculated from the 2nd order Birch–
Murnaghan equation  of state indicated that pyrochlore-type 
hafnates have a bulk modulus of ~250 GPa, and defect-fluorite 
type hafnates have a bulk modulus of ~400 GPa (figure 9). 
Bulk moduli of hafnates are notably higher than analogous 

Table 3.  Mode Grüneisen parameters for pyrochlore-type  
Raman-active modes of rare-earth hafnates.

Mode Grüneisen parameter; γi0

A Sm Eu Gd Dy Y Yb

Mode
F2g(+Eg) 3.09 4.63 2.56 12.84 5.26 2.38
F2g 2.65 4.48 3.03 2.20 0.05 0.31
F2g  +  A1g 2.00 3.29 1.74 1.45 10.64 11.94
F2g 2.49 2.98 1.68 1.62 2.83 0.97
Eg (Dy, Y only) 8.43 11.62

Figure 12.  Normalized full width at half maximum (FWHM) of 
F2g  +  Eg peak of hafnates (A  =  Sm, Eu, Gd, Dy) as a function of 
pressure.
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zirconates and titanates [2–11], which may be due to the 
covalency of <Hf–O> bonds [76]

The behavior of Dy2Hf2O7 was not entirely consistent 
with the other defect-fluorite hafnates studied at high pres
sure. Dy2Hf2O7 showed preferential orientation, as revealed 
by x-ray diffraction, as did the pyrochlore-type hafnates. The 
pyrochlore-type Raman modes of Dy2Hf2O7 persisted to sig-
nificantly higher pressures than Y- and Yb-hafnates. The radius 
ratio of Dy2Hf2O7 is similar to Y2Hf2O7 (table 1). Furthermore, 
the compressibility of Dy2Hf2O7 is an intermediate value 
~300 GPa, suggesting the structure may be intermediate 
between that of pyrochlore and defect-fluorite. Recent work on 
the transition between pyrochlore and defect-fluorite in hafnates 
showed a similar result [42, 43]. The radius ratio of Dy2Hf2O7 is 
just below the pyrochlore stability field, and its behavior at high 
pressures suggests hybrid influences of pyrochlore-short range 
ordering and the defect-fluorite long-range structure.

Recent work by Shamblin et al [38] has shown that fluorite 
and weberite-like structures coexist at different length scales 
in disordered pyrochlores, regardless of the disordering mech
anism—irradiation, temperature, or compositional defects. 
Recent work by Tracy et al [17] showed irradiated stannate 
pyrochlore with a weberite-type local structure evidenced 
by Raman spectroscopy. The behavior of hafnate pyrochlore 
decompressed from 50 GPa suggests a similar result: a long-
range structure best described as a defect-fluorite, with a 
weberite-like local structure.
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